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I. SUPERVISED MACHINE LEARNING AND
DIMENSIONALITY REDUCTION

A. Data preprocessing

Initially, it was apparent that several patient scans had
features which were nearly all missing, these patients
were removed as they add too much noise to the data.
Subsequently, the data was split into training and testing
sets to prevent data leakage, ensuring each patient was
exclusively assigned to either set. This split was stratified
by patient health status to maintain a proportional rep-
resentation across both sets. Following this, the dataset
was divided into feature data and labels, with categorical
data transformed into binary representation using one-hot
encoding to eliminate any ordinal or hierarchical relation-
ships. Furthermore, age data was standardised to align with
the normalised features, preventing potential divergence
during the learning process. 5-fold cross-validation was
used to give a reliable estimate of model performance.

B. K-nearest neighbours (KNN)

The KNN predicts the class label or target value of a
new data point by averaging the labels or values of its
k nearest neighbors in an n-dimensional feature space.
Increasing the number of neighbors (K) typically reduces
the model’s variance, resulting in more stable predictions
less sensitive to data noise. However, overly large K
values can lead to inflexible decision boundaries, limit-
ing the model’s ability to capture complex patterns in
the data. Testing revealed that utilising eight neighbors
achieved the optimal balance. Various distance metrics,
including Euclidean, Manhattan, and Minkowski distances,
are used to measure the proximity between neighbors in
KNN models. Euclidean distance, which calculates the
straight-line distance between two points in n-dimensional
space, is the most widely used metric. It’s noteworthy
that Euclidean distance is sensitive to scale, necessitating
standardisation to ensure that features are on a similar
scale. Training results demonstrated the effectiveness of
Euclidean distance, which aligns with expectations given
that the dataset primarily comprises continuous variables.

C. Support Vector Machine (SVM)

SVMs aim to discover the ideal hyperplane for class
separation, maximising the margin between classes. By
employing kernels, SVMs can capture intricate relation-
ships by projecting data into higher-dimensional spaces.
A grid search was performed, indicating that a linear
kernel yielded the highest accuracy, implying the dataset’s
potential linear separability. Choosing a smaller regularisa-
tion parameter, c, facilitates a wider margin (resulting in
high recall) but may permit miss-classifications (leading
to low precision). To strike a balance, a regularisation
parameter of 0.3 was selected, optimising the trade-off
between margin width and classification accuracy.

D. Artificial Neural Networks (ANN)

ANNs execute classification tasks by processing in-
put data through layers of neurons, leveraging weighted
connections and non-linear activation functions in hidden
layers to generate final classification outputs. Throughout
training, ANNs iteratively adjust connection weights and
biases via supervised learning algorithms such as back-
propagation, with the goal of minimising the disparity
between predicted and actual outputs. In this particular
task, the chosen ANN architecture consisted of an input
layer followed by two hidden layers, featuring 16 and 32
neurons, respectively. Each hidden layer employed Recti-
fied Linear Unit (ReLU) activation functions to effectively
capture the intricacies present in the data. Initially, the
model exhibited signs of overfitting, as evidenced by the
continual rise of the training curve while the validation
performance plateaued. To mitigate overfitting, L2 (ridge)
regularisation was introduced to the hidden layers, prevent-
ing excessively large coefficients from fitting too closely
to the dataset.

Fig. 1: ANN Model accuracy training curve against epoch
number

E. Model Comparison

In the context of MS diagnosis, achieving high recall
is paramount as it ensures the accurate identification of
most MS cases, facilitating early intervention for improved
patient outcomes. Precision is also crucial to mitigate
false positives, where healthy individuals are incorrectly
diagnosed with MS, preventing unnecessary stress and
reducing the burden on healthcare resources. The F1 score
serves as a valuable metric, striking a balance between
precision and recall, particularly beneficial in imbalanced
datasets with limited occurrences of MS. The Receiver
Operating Characteristic (ROC) curve shown by figure
2 illustrates the ability for each model to discriminate
between positive and negative classes respectively by plot-
ting the true-positive rate (TP) against the false-positive
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rate (FP) for different threshold settings. The Area-Under-
Curve (AUC) metric evaluates the discrimination power of
each model across a variety of thresholds. The Precision-
Recall curve shown by figure 3 which illustrates the
trade-off between precision and recall. SVM models have
the greatest AUC score for both ROC and PR curves
indicating that they are the most versatile models across
the range of thresholds. Given the MS-diagnosis dataset’s
characteristics—comprising approximately 26 features and
only 138 patients, the KNN algorithm can’t perform as
well as the curse of dimensionality distorts performance
metrics. ANNs and SVMs both perform well predict in
high dimensional spaces as ANNs can extract important
features from the data and SVMs can find hyper-planes
irrespective of the dimensionality. Table II show SVMs
outperform ANNs in all performance metrics likely be-
cause SVMs have hyper-parameters to reduce overfitting.

Model Precision Recall f1 score Accuracy
KNN 0.751 0.792 0.816 0.782
SVM 0.903 0.963 0.932 0.927
ANN 0.835 0.937 0.881 0.847

TABLE I: Performance metrics of each KNN, SVM and
ANN

Fig. 2: Receiver Operating Characteristic (ROC) curve for
KNN, SVM and ANN with Area under Curve (AUC) score

F. Dimensionality reduction

Dimensionality reduction is a technique used to reduce
the number of features whilst preserving as much relevant
information as possible. When features are removed, the
volume of the data decreases exponentially and reduces
the computational cost of training a predictive model,
furthermore predictive models are less likely to overfit to
datasets with fewer features with greater variance.

1) t-distributed Stochastic Neighbor Embedding (t-
SNE): t-SNE is a non-linear dimensionality reduction
technique that is often used to visualise higher dimen-
sional datasets which is useful for data exploration and
feature engineering. Figures 4 and 5 show the effect of
applying both PCA and auto-encoding to the data in two
dimensional space.

Fig. 3: Precision Recall (PR) curve for KNN, SVM and
ANN with Area under Curve (AUC) score

Fig. 4: t-SNE visualisation of PCA

Fig. 5: t-SNE visualisation of Autoencoders

2) Principal Component Analysis (PCA): PCA projects
the original data onto a lower-dimensional subspace
spanned by a set of uncorrelated variables called the
principal components which capture as much variance
as possible. For this dataset, as few as 10 principal
components capture over 98% of variance within the data.



3

3) Autoencoders: Autoencoders are indeed a type of
ANN commonly used for dimensionality reduction. The
typical architecture of an autoencoder involves an encoder
network, which takes high-dimensional input data and
maps it onto a lower-dimensional latent space, and a
decoder network, which reconstructs the data from this
compressed representation, aiming to produce an output
with fewer dimensions than the original dataset. This pro-
cess effectively learns a compressed representation of the
input data while attempting to minimise the reconstruction
error between the input and output data.

4) Comparison of results: Table II presents a com-
parison of evaluation metrics for SVM with the original
dataset, SVM with PCA dimensionality reduction, and
SVM with autoencoder dimensionality reduction. SVM
with the original dataset exhibits the best performance,
as SVM performance typically remains robust in high-
dimensional space, while dimensionality reduction in-
evitably reduces the explained variance within the data.
The inclusion of PCA dimensionality reduction only
marginally diminishes performance, as the explained vari-
ance still retains 98% of the original dataset’s information.
However, autoencoders demonstrate a noticeable decline
in performance compared to PCA, primarily due to their
lower computational efficiency on small datasets and the
potential loss of information. Figure 6 illustrates the
precision-recall curve for both PCA and autoencoder-
reduced datasets. While both methods exhibit similar
performance at low recall, PCA is able to maintain high
precision at high recall values. In summary, PCA was able
to achieve nearly identical performance to the original
SVM using a fraction of the data features which demon-
strates the ability of PCA to reduce the computational
cost of machine learning algorithms using dimensionality
reduction.

Reduction Precision Recall f1 score Accuracy

SVM (Original) 0.901 0.966 0.934 0.928

PCA 0.871 0.965 0.912 0.903

Autoencoder 0.853 0.851 0.852 0.847

TABLE II: Performance metrics of each model

Fig. 6: PR-Curve for Autoencoders and PCA

G. Unsupervised learning

Unsupervised learning techniques can be effectively
utilised with datasets related to multiple sclerosis (MS)
to cluster patients based on shared features. The rationale
behind this approach is that individuals with similar char-
acteristics are more likely to exhibit similar manifestations
of the condition. This approach is particularly useful
when you don’t have any labeled training data but you
would still like to make a good prediction. The two most
common clustering techniques are k-means and spectral
clustering. K-means clustering groups data points by min-
imising distances to cluster centroids, iteratively updating
centroids based on point assignments. Spectral clustering
constructs a similarity graph and analyses its connectivity
using spectral graph theory. It then identifies clusters based
on eigenvectors associated with the smallest eigenvalues.
K-means prioritises geometric closeness, while spectral
clustering focuses on data connectivity.

1) Preprocessing: The first step in data preprocessing
was to standardise the entire dataset, algorithms like k-
means clustering calculate groups based on relative dis-
tance from each point to a cluster centre, standardisation
ensures that all features contribute on an equal scale. PCA
was used to reduce the dimensionality of the dataset as
distances are an ineffective clustering technique in high-
dimensional spaces.

2) Performance metrics: The Adjusted Rand Index
(ARI) was chosen as the primary performance metric for
this investigation, as it provides a quantitative assessment
of the agreement between the true clustering (or ground
truth) and the predicted clustering produced by a clustering
algorithms. The equation of Rand Index is shown by
equation 1, and it is computed for every pair of clusters.
Where a+b is the number of agreements between true
and predictive clustering and c+d is the total number of
disagreements in true and predicted clustering.

RI =
a+ b

a+ b+ c+ d
(1)

The equation for the ARI score is given by equation
2, where RIexpected is the expected agreement if the
clusters were randomly placed and RImax is the maximum
possible RI-score for a given pair of clustering. This means
that ARI score is typically normalised between 0 and 1,
where 0 is agreement expected if the clusters were placed
randomly and 1 is expected if clusters perfectly aligned
with the ground-truth labels.

ARI =
(RI −RIexpected)

(RImax −RIexpected)
(2)

3) Comparison of results: Spectral clustering had a
higher ARI score compared to K-means suggests that it
captured the underlying structure of the data better. This
can be attributed to Spectral clustering’s ability to detect
complex patterns and relationships beyond what K-means
can achieve solely based on distances. While ARI is an
important metric for evaluating clustering performance, it’s
crucial to consider other evaluation metrics as well, such
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as true positive rate (TPR), true negative rate (TNR), false
positive rate (FPR), and false negative rate (FNR). In the
context of diagnosing MS, minimising the false negative
rate is of paramount importance because misclassifying a
patient with MS as healthy could delay critical treatment.
Spectral clustering’s lower false negative rate indicates its
effectiveness in correctly identifying patients with MS,
ensuring they receive prompt medical attention.

Algorithm ARI True-P False-P False-N True-N

K-Means 0.0878 62 22 49 71

Spectral 0.127 76 30 35 63

TABLE III: Performance metrics of K-means and Spectral
Clustering

4) Visualisation of results: Figures 7 and 8 show vi-
sualisations of the performances of k-means and spectral
clustering algorithms compared to the ground truth. Spec-
tral clustering seems to perform slightly better on edge-
cases which are further away from the main distribution
of data-points as it is able to leverage connectivity to find
patterns.

Fig. 7: Visualisation of K-means clustering in two dimen-
sions

Fig. 8: Visualisation of spectral clustering in two dimen-
sions

II. CONVOLUTIONAL NEURAL NETWORKS

A. Introduction

Convolutional Neural Networks (CNNs) are pivotal in
image classification tasks due to their ability to extract
intricate features from images, often crucial indicators of
diseases like Multiple Sclerosis. Typically, CNN archi-
tectures comprise stacked convolutional layers, pooling
layers, and activation functions, culminating in a fully
connected ANN. Convolutional layers employ filters that
traverse the image, generating feature maps capturing
specific edges, textures, or shapes. Subsequently, pooling
layers diminish the spatial dimensions of each feature
map, managing the CNN’s complexity and size. Activation
functions introduce non-linearity, enhancing the model’s
capacity to discern complex feature interactions. In the
realm of MS diagnosis, CNNs learn to associate structures
present in eye scans with MS-related pathologies, aiding
in accurate disease detection and classification.

B. Data Preprocessing

The data preprocessing initially involved flipping retina
scans to ensure consistent orientation for easier inter-
pretation by the CNN, based on information from the
SLO Excel file. Subsequently, unique patient IDs were
organized into training, validation, and test sets to prevent
data leakage and ensure model validity. The split was
70% for training, 15% for validation, and 15% for testing,
prioritizing a larger training set for effective learning,
while enabling hyperparameter tuning on the validation
set and assessing generalisability on the test set.

C. Customised CNN

Hyperparameter optimisation involves fine-tuning the
external settings of a machine learning model to enhance
its performance, distinct from its internal parameters.
These settings, known as hyper-parameters, influence the
learning process. Optuna, a package for hyper-parameter
optimization, was chosen for this task. The first step was
to select accuracy as the performance metric due to the
balanced distribution of classes in the dataset, providing a
comprehensive comparison of each model’s overall perfor-
mance. Initially, a baseline architecture with two convolu-
tional layers offered the best performance for the minimum
computational cost. Then, the Optuna algorithm ran the
CNN for a given search space and the best accuracy was
found using a Gaussian algorithm. The optimised CNN
architecture, illustrated in Figure 9, is designed to process
grayscale images with dimensions of 256x256 pixels. The
model comprises two convolutional layers, each utilizing
3x3 pixel filters. The first convolutional layer uses 5 filters,
while the second employs 15 filters, as deeper layers
capture more abstract features. The kernels for the first
and second convolutional layers are depicted in Figures
10 and 11 respectively. When comparing the kernels from
layer 1 and 2, it’s evident that layer 2 captures more
complex patterns, whereas feature map one represents
simple edges which demonstrates the customised CNN
performing hierarchical feature extraction.
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Fig. 9: Architecture of custom CNN

Fig. 10: Visualisation of the kernels in the first convolu-
tional layer

Fig. 11: Visualisation of the kernels in the second convo-
lutional layer

Fig. 12: Visualisation of the kernels in the second convo-
lutional layer

The first kernel of convolutional layer 1 shown in figure
10 detects horizontal lines, the resulting activation map on
a retina scan images shows is shown by figure 12. The
activation map detects the basic edges of the structure,
then deeper layers form more abstract activation maps
that detect features specific to MS diagnosis. After Optuna
optimisation, L2 regularisation was added to convolutional
layers 1 and 2 to prevent large weights in the CNN
from over-fitting to training data. Dropout was added
after each convolutional layer to prevent co-adaptations
between neurons which detect features specific to the
training set. The resulting loss curve is shown by figure
23. Unfortunately, the loss curve still shows signs of over-
fitting which could be due to the dataset lacking depth and
diversity.

Fig. 13: Visualisation of the kernels in the second convo-
lutional layer

D. Data Augmentation

Data augmentation is a technique used to artificially
expand and enrich the dataset. In medical image classi-
fication, especially with datasets like retina scans limited
by privacy concerns. Several types of data-augmentation
techniques are shown by Figure 14.

Fig. 14: Data Augmentation Techniques
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Fig. 15: Range of 2◦ of rotation.

Fig. 16: Horizontal flipping.

Fig. 17: 10% zoom range.

Fig. 18: Combination of flipping, 10% zoom and 2◦ of
rotation.

Augmentation Precision Recall F1-Score Accuracy

Original 0.691 0.881 0.775 0.701

Rotation (2) 0.842 0.844 0.843 0.826

Rotation (5) 0.817 0.845 0.826 0.817

Flip (Horizontal) 0.798 0.928 0.857 0.823

Flip (Vertical) 0.749 0.732 0.731 0.728

Zoom (0.1) 0.776 0.927 0.845 0.802

Zoom (0.2) 0.743 0.921 0.827 0.777

Gaussian (10%) 0.571 0.627 0.594 0.566

Combined (Selected) 0.857 0.929 0.881 0.863

TABLE IV: Performance metrics for each augmentation
technique

Fig. 19: ROC curve of combined augmentation and orig-
inal dataset

Good augmentation techniques make models more robust
to variations within test data by applying transformations
which reflect the natural variation of data. Figure 15
illustrates the loss curve for 2◦ of rotation. Rotation is
a good augmentation technique as retina scans will not
always be taken at the same angle and the retina structure
will vary across sample population. Augmentation with 2◦

of rotation increases the training loss however, decreases
the validation loss significantly showing better generalisa-
tion. When the angle increases to 10◦ the training looses
specificity to the task and the test performance decreases.
Figure 16 shows that the flipping transformation causes the
model to overfit to the augmented dataset, CNN models are
non-linear interpolators and require more original images
to predict the variation in data. Figure 17 shows the
augmentation technique with 10% range of variation in
zoom, this had the greatest impact on the loss curves as
the validation curve aligned well with the training curve.
This is because zoom not only makes the CNN more
robust to variation in the images, it also allows the CNN to
see an increase resolution of the retina structure to detect
important features. Figure 18 shows the loss-curve of the
CNN with a combination of rotation flip and zoom, the
loss characteristic is similar to zoom. Table IV shows
the key performance metrics from the best of five trials
using each augmentation. Heavy Gaussian noise adversely
affects model performance by obfuscating fine details
of the retina structure. Such noise is artificial and not
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representative of typical test samples with high-resolution
scans. The combination of every augmentation technique
had a very positive impact on precision, recall and f1 score
as the CNN was able to extract better predictive features
from augmentation. Figure 19 shows a comparison of the
ROC curve of the original model and model with an
augmented dataset, the augmented model has a better true
positive prediction rate over a wide range of thresholds
making it a versatile model.

E. Transfer Learning

Transfer learning involves leveraging a pretrained model
on a large and diverse dataset to accelerate training and
improve performance on a related task by transferring
learned knowledge and patterns. This section will discuss
the performance of the VGG16 pretrained model on the
MS retina scan classification task. VGG16 has 16 convo-
lutional layers and 3 fully connected layers, VGG16 was
trained on 3-channel rgb data so the grey-scale data must
be tripled to be used as input to the VGG16 model. Figure
20 shows the learning curve of a frozen VGG16 for the
retina classification task when all of the layers are frozen.
The learning loss approaches zero whilst the validation
loss diverges away, this is because the output layer is able
to memorise the training set whilst learning no valuable
features, this means that the model struggles to predict
any unseen data. The obvious next step is to unfreeze
some of the top layers such that the bottom layers still
retain the advantage of detecting simple shapes and edges,
whilst the top layers can extract more abstract features
that are specific to the retina dataset. Figure 21 shows the
loss curve with 14 frozen layers and 2 trainable layers.
The validation and training losses are very closely aligned
however and the performance of the model is quite good.
The next step should be unfreezing more layers to allow
more parameters to fit to the dataset. Figure 22 shows the
loss curve with 10 frozen layers and 6 trainable layers. It
is clear that the validation curve follows the training curve
up to about 15 epochs and then begins to diverge which
suggests over-fitting. Table V shows that VGG16 with
all frozen layers predicted had very good recall but poor
precision, suggesting that it predicted that every single
patient had MS. With 14 frozen layers and 2 free layers,
the f1-score improved to 0.79 and had a good balance
between precision and recall suggesting that the model
was gaining more specificity to the task. Increasing the
number of trainable layers further causes overfitting and a
decrease in f1-score and less consistency on the test set.

No. frozen layers Precision Recall F1-Score Accuracy

16 0.573 1.00 0.721 0.571

14 0.834 0.761 0.796 0.775

12 0.716 0.882 0.795 0.727

10 0.921 0.486 0.637 0.721

TABLE V: Effect of frozen depth of unet on performance

Fig. 20: Fully frozen VGG16 model

Fig. 21: VGG16 with two trainable layers

Fig. 22: VGG16 with four trainable layers

F. Conclusion

In conclusion, hyperparameter optimisation is a simple
way of optimising the parameters of a model to a given
task and regularisation techniques such as L2 regularisa-
tion and dropout can reduce the risk of over-fitting. The
optimisation of these networks involves a combination
of loss-curve analysis and performance metric evaluation.
Dataset augmentation found the greatest performance ben-
efit, by adding different transformations to the training
data, the model became more robust to over-fitting and had
a greatly improved generalisation performance. Transfer
learning shows that careful investigation is required to
determine the depth of the model which should be frozen.
The retina classification task is a very specific dataset and
as such the benefits of transfer learning for basic image
recognition must be balanced with network specificity. The
optimal number of frozen layers is about 14 for this task.
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III. RETINAL VESSEL SEGMENTATION

A. Methodology

During the initial preprocessing stage, the path to each
directory which contained the images were defined. Then
a function was defined to preprocess each image and mask
pair. Preprocessing involved a conversion from 3-channel
color to single-channel gray-scale and were subsequently
resized to 256x256 pixels. This ensures that the model
learns on a dataset which is the same format as the SLO
images on which this model will be tested. Finally, the
pixel values were standardised to stabilise the learning
process. The pixel values were then converted to floats and
scaled between 0 and 1. The masks were also standardised
between 0 and 1. A map function was then applied to both
train and test data simultaneously to maintain consistency.
This task is an example of binary segmentation, where the
U-net’s objective is to classify each pixel in the scan as
either part of the retina body or not. To achieve this, the
sigmoid activation function was used to scale the output
values between 0 and 1. Furthermore, the binary cross-
entropy loss function was utilised to quantify the disparity
between predicted and actual pixel classifications.

B. Performance metric

The Dice coefficient, often used in image segmentation
evaluation, measures the similarity between predicted and
ground truth masks. It quantifies overlap, with 0 indicating
no overlap and 1 indicating perfect overlap. It’s calculated
as the ratio of twice the intersection of the masks to
the sum of their sizes. Here, |A ∩ B| is the size of the
intersection between predicted (A) and ground truth (B)
masks, while |A|+ |B| is the total total size of predicted
and ground truth labels.

Dice =
2× |A ∩B|
|A|+ |B|

(3)

C. Initial Model

The architecture was structured with four encoding blocks,
each reducing the input dimensions from the original
image. Each layer had 64, 128, 256 and 512 feature
maps respectively, extracting increasingly abstract features
through convolutional layers with a kernel size of 3 and
ReLU activation functions. Dropout layers with a propor-
tion of 0.2 were strategically placed to mitigate overfitting
concerns. Following the encoding path, a bottleneck layer
with 1024 nodes encapsulated the most critical features.
Subsequently, the decoding path comprised four blocks
mirroring the encoding configuration, but in reverse order,
aimed at reconstructing spatial information. This sym-
metrical design facilitated the restoration of finer details
lost during the encoding process. The integration of skip
connections between corresponding encoding and decod-
ing layers enabled the preservation of spatial information
and facilitated gradient flow during training. The model
was trained over 90 epochs, the loss curve is shown by
figure 23, the validation loss follows the training loss
which indicates that generalisation performance is very
good. Figure 24 displays the dice coefficient performance
increasing with the number of training epochs. Training
is slow to begin with the initial selection of weights is

quite poor but rapidly increases from between 10 and 40
epochs. The final dice coefficient in the test set was about
0.72, indicating the model’s proficiency in delineating key
features within the retina scans. Figure 25 shows the
original image, ground-truth mask and predicted mask for
two images. The model is able to predict the mask when
the retina body is on the right or left side of the eye, this
is a good indication that the model is robust to real-world
variations in data. Figure 26 shows the model being tested
on the SLO dataset, the mask aligns very well with the
original image.

Fig. 23: Loss curve for training and validation (1st model)

Fig. 24: Dice curve for training and validation (1st model)

Fig. 25: Plot showing retina segmentation of fives dataset.
Left: Original image; Middle: Ground Truth; Right: Pre-
diction;
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Fig. 26: Plot showing retina segmentation of SLO dataset.
Left: Original image; Right: Prediction; SLO

D. Model Development

Although the original unet performed very well, it could
benefit from a greater capacity as the training curves
indicate underfitting due to the proximity of validation
and training loss. The unet is that it takes a long time
to train so it is not feasible to blindly apply a grid-search
algorithm to optimise the architecture. The first step was
to increase the number of convolutional layers to two
per encoder/decoder block, this will allow the unet to
capture deeper representations in each layer and reduce
underfitting. The next step was to replace dropout with
batch normalisation, because the dataset is quite small the
randomness introduced by dropout prevents the network
from learning effectively. Batch normalisation was applied
after each convolutional layer to normalise the activation’s
of each layer to promote more stability in training. Fur-
thermore, batch normalisation introduces some noise into
the network to maintain some regularisation effect. The
final alteration to the network was to increase the learning
rate from 0.0016 to 0.01, the greater learning rate allows
the network to stop getting stuck in ’local-minima’ and
find the best solution. Figure 27 shows the updated loss
curve for the new network, the training loss approaches
zero whilst the validation loss shows a lot more noise.
This might be a consequence of batch normalisation not
having enough regularisation effect on the deeper network.
Figure 28 shows the dice-coefficient curve for training
and validation data. Again, the validation curve is much
more noisy than the training curve indicating a slight lack
of regularisation, however the test Dice score was 82%
indicating a significant improvement over the last iteration.
Although the binary-cross entropy validation loss does not
reach as low a point the initial model, the loss curve is
mainly a tool to optimise hyper-parameters. The validation
and test performance with the dice-coefficient are a more
representative measure of segmentation accuracy. This
improvement is validated by Figure 29 which show that the
predicted masks in the updated model capture a slightly
greater resolution of the retina bodies than before in Figure
25. This performance is carried over to the SLO dataset in
Figure 30 for which the model more accurately represents
the original image. In summary, accurate segmentation
enables the identification and delineation of anatomical
structures, lesions, tumors, and other abnormalities in
medical images. Segmentation has been improved by
using a slightly more complex network, however increased
regularisation is nesesary to reduce overfitting on the more
complex model.

Fig. 27: Loss curve for training and validation (2nd model)

Fig. 28: Dice curve for training and validation (2nd model)

Fig. 29: Plot showing retina segmentation of fives dataset
(2nd model). Left: Original image; Middle: Ground Truth;
Right: Prediction;

Fig. 30: Plot showing retina segmentation of SLO dataset
(2nd model). Left: Original image; Right: Prediction;


