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Abstract

Computational fluid dynamics (CFD) is an indispensable tool in several
building engineering applications, including ventilation system design and
building energy modeling. In these applications, CFD helps engineers im-
prove buildings’ energy efficiency and resilience. Despite these successful
implementations, the high computational cost of CFD simulation precludes
its application in several engineering problems. As a remedy, proxy models
of CFD have been recently introduced to replicate their simulation results
by machine learning models at a significantly reduced computational cost.
However, existing proxy models are lacking in terms of accuracy and general-
izability. This research aims to alleviate these issues. In the context of CFD
proxy modeling, this paper introduces a novel two-layer machine-learning ar-
chitecture and a preprocessing algorithm that transforms spatial coordinates
to improve the model’s accuracy and scalability (AI Novelties). The novel
CFD proxy model introduced in this paper can accelerate CFD simulation by
99.996% while achieving 95% prediction accuracy. This model can expand
the application of CFD simulation in several building engineering problems
(Engineering Application).

Keywords: Computational Fluid Dynamics, Proxy Modeling, Ventilation,
Building Modeling, Sustainability, Resilience

1. Introduction

Indoor environmental modeling is crucial in several applications in build-
ing engineering, such as energy efficiency optimization [1], air quality as-
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sessment [2], and the aerosol transmission of infectious diseases [3]. In this
context, computational fluid dynamics (CFD) is widely applied to predict
velocity flow fields, which, in turn, helps assess the efficiency of natural and
mechanical ventilation, as well as the dispersion of aerosols inside indoor
spaces. CFD is proven to be an effective tool for this purpose; however, its
implementation often requires domain expertise, high-performance comput-
ers, and long run times, particularly in larger indoor environments. These
challenges preclude its application in several building engineering problems,
particularly where simulation results are required at an accelerated pace,
such as real-time control systems or coupling with meta-heuristic optimiza-
tion algorithms.

The rise of the COVID-19 pandemic brought this limitation to the at-
tention of the research and innovation community since aerosol has been
identified as the dominant transmission route of the coronavirus [3], which is
best addressed by mechanical ventilation systems. This highlights the need
for a better understanding of aerosol dynamics in indoor spaces in real-time
to improve air ventilation in buildings and enhance their resilience against
infectious diseases. The National Library of Medicine emphasizes the po-
tential of CFD in elucidating disease transmission mechanisms but notes a
research gap in understanding how room conditions such as windows, doors,
and ventilation rates affect pathogen spread [4]. This gap exists due to the
high computational cost of CFD simulation, which makes it almost impossi-
ble to run several simulations to test the impact of changes in the building
layout [5].

During the COVID-19 pandemic, maintaining well-ventilated public spaces
became crucial for reducing pathogen concentrations. However, if a com-
prehensive grasp of airflow dynamics is lacking, increased ventilation might
inadvertently exacerbate pathogen dispersal. This assertion is supported by
the findings of Birnir et al. [6], who analyzed fluid dynamics in a restaurant
setting with recommended air-conditioning rates. Their findings indicate
that the risk of transmission when dining at separate tables within fifteen
minutes is comparable to that of sitting adjacent to an infected individual. In
another example, Ren et al., [7] introduced a zonal demand-controlled venti-
lation system that uses cameras to detect room occupancy and determine the
appropriate ventilation rate based on CFD simulation data. Their findings
show that such CFD-informed control systems could reduce the infection rate
to 2.8% and reduce energy consumption by 34%.

Another prominent CFD application in building engineering focuses on
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modeling and optimizing building energy consumption. According to the
World Green Building Council [8], 28% of global carbon emissions come from
heating, cooling, and powering buildings, yet very little is known about how
real-time control mechanisms can improve operational efficiency. Wu et al.
[9] proposed a house with over 300 sensors to act as inputs to a CFD system,
which would then inform how the actuators should operate to increase effi-
ciency. These sensors would then be combined with local weather forecasts to
create a digital twin of the house so that actuators could optimize the thermal
comfort of the house while reducing its energy consumption. This study was
limited by the fact that the actuators cannot react to real-time changes to
boundary conditions because of long simulation times. There are also several
efforts made to improve the energy efficiency of ventilation systems by intro-
ducing model predictive control (MPC) systems [1, 10]. MPC leverages the
power of CFD simulation to determine the most efficient ventilation strategy
in a multi-zone indoor space, reducing the energy consumption of ventilation
systems by up to 35% [1]. Although several studies have confirmed MPC’s
effectiveness, its real-world application is still hindered by the high compu-
tational cost of CFD simulation and the lack of powerful hardware to run it
and inform the control system in real time.

Recognizing these limitations, there is growing interest in developing
smart proxy models (SPMs) to replicate the CFD simulation results at a
significantly reduced computational cost. SPMs leverage the power of ma-
chine learning (ML) to overcome the high computational cost of CFD sim-
ulation. While numerical simulations rely on iterative mesh-grid updates,
smart proxy models use data-driven approaches to predict complex indoor
airflow dynamics. This research introduces an SPM for CFD applications
in building engineering. Our proposed model uses an original architecture
that improves its accuracy and scalability compared to the existing state-of-
the-art models. The proposed SPM can predict indoor airflow velocity fields
with 95% accuracy (mean absolute percentage error) at only 0.004% compu-
tational cost of equivalent CFD simulation. Hence, it offers great potential in
several applications in building engineering, including real-time ventilation
control and building layout optimization using heuristic methods.

The structure of this paper is as follows: Section 2 reviews previous work
in accelerated CFD simulation, providing insights into the advantages and
limitations of research on CFD applications in building engineering and ex-
isting SPMs. Section 3 introduces the methodological structure of the SPM
introduced in this paper. Section 4 introduces the development iterations
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of the proposed SPM and its final architecture. Section 5 outlines the re-
sults and discusses the applications of SPM in real-world building engineering
problems. Finally, Section 6 presents the research conclusions and identifies
the future areas of research and development in this context.

2. Literature Review

2.1. CFD Simulation in Built Environment
Reviewing the building engineering literature reveals two prominent ap-

plications of CFD in building engineering: (i) building energy modeling and
designing HVAC systems and (ii) simulating the transmission of infectious
diseases in indoor environments.

CFD simulation is widely used for modeling and improving the energy ef-
ficiency of HVAC systems, which is by far the most energy-consuming end-use
in buildings, contributing to 30%-50% of the total building energy consump-
tion [11, 12]. Model-Predictive Control (MPC) is a mechanism developed for
the optimal control of HVAC systems based on the velocity flow fields ac-
quired by CFD simulation. Several studies confirm the superior efficiency of
MPC for HVAC systems in comparison to manually- or Demand-Controlled
Ventilation (DCV) [1, 10, 13]. Since generating CFD simulation results in
real-time is impractical, existing MPC methods often use CFD simulation
results generated during the design stage by only considering static building
features and constant, pre-set ventilation rates [11]. These algorithms fail to
account for dynamic changes in indoor environments. This oversight results
in significant differences between the effectiveness of these algorithms in the
simulation environment (i.e., fully controlled) and field tests [13], as such
dynamic changes often significantly impact airflow patterns [14, 15, 16, 17].
Coupled with a real-time CFD simulation engine, existing MPC algorithms
can significantly reduce buildings’ carbon footprint by lowering HVAC sys-
tems’ energy consumption.

In terms of disease transmission control in buildings, the indoor environ-
ment is often considered well-mixed flow conditions; however, several studies
confirm that this assumption does not hold true since ventilation in build-
ings is very complex and requires accurate CFD simulation to determine
the risk of infection inside buildings [18]. A comprehensive review by Tsang
et al. [19, 20] reveals the significant role of CFD simulation in enhancing
the resilience of healthcare facilities against the spread of infectious diseases.
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In previous studies, researchers used CFD simulation to determine the im-
pact of static (e.g., layout) [21] and dynamic building features (e.g., occu-
pants, doors) [14] on the effectiveness of mechanical ventilation on controlling
disease transmission in healthcare establishments. Despite these successful
implementations and promising results in improving ventilation systems’ ef-
fectiveness, the high computational cost of CFD simulation precludes its
application in real-time control of HVAC systems in hospitals [5].

The methodology we introduce in this paper can address these limitations
by delivering robust (i.e., fast and accurate) predictions of velocity flow fields
in building environments using a novel modeling architecture that improves
both accuracy and generalizability of CFD proxy models. The proposed
SPM enables building and mechanical engineers to run CFD simulations at
an accelerated pace, realizing real-time control and optimization applications.

2.2. Smart Proxy Models for CFD
Smart Proxy Models (SPMs) harness ML algorithms to develop efficient

surrogate models for complex numerical simulations, including discrete ele-
ment method [22, 23], computational fluid dynamics [24, 5], and other com-
plex simulations [25]. These CFD modeling applications, SMPs are proven
effective in scenarios involving the intricate simulation of spatio-temporal
flow structures in fluids [5]. They bypass computationally intensive tasks by
learning patterns in simulation data and provide quick yet accurate approx-
imations of the data.

Aboaba et al. [26] an SPM to replicate thermal-flow patterns of pres-
sure, temperature, and species concentrations (nitrogen, oxygen, and carbon
dioxide) to less than 10% error. Their approach also had faster execution
times compared to numerical CFD simulation methods. These results were
achieved with a limited amount of training data, and the computations took
5-6 minutes on an "inexpensive" laptop, contrasting with the 24 hours needed
to collect the training data on a high-performance computer. Shahkarami and
Mohaghegh [27] utilized SPMs to expedite subsurface modeling for enhanced
oil recovery, achieving highly accurate results with 98.9% less computational
time. Wui et al. [28] introduced SPMs to streamline the modeling of frac-
tured reservoirs, notorious for their complexity. By analyzing a database
derived from numerical simulations, SPMs identify patterns, reducing com-
putational demands. These models accurately predicted production rates,
including fuel and water oil, in a fraction of the time compared to traditional
methods, demonstrating their efficiency and effectiveness.
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An obstacle that challenges the development of SPMs is their extensive
demand for computationally expensive training data. Researchers tackled
this challenge using feature engineering methods, such as (i) developing a
generalizable form for representing input data, such as defining each point
based on its distances to each boundary condition [26, 5], (ii) implementing
fuzzy clustering algorithms to assess the importance of each input feature in
determining the velocity flow fields in different regions of the indoor environ-
ment [29, 30], and (iii) implementing advanced feature selection algorithms
to reduce the input space dimension [28].

Haghshenas et al. [31] used SPMs to predict optimal water injection
sites, aiming to boost oil recovery rates. They assembled a training dataset
using Latin Hypercube Sampling to distribute oil injection sites evenly across
the search space. To improve the performance of their SPM, Haghshenas et
al. [31] practiced input feature normalization and analyses to reduce the
dimensionality of the input space by introducing hyper-features. Despite the
improvements in their model accuracy, they observed that inherent errors
within the ANN accumulated over time, resulting in a decrease in model
performance even with a large dataset size.

An alternative architecture for SPMs in such applications is ensemble
learning [32]. Ensemble learning is a machine learning technique that com-
bines multiple models to produce a more accurate predictive model. While
it can be challenging to make a single ANN generalizable to different flow
scenarios, an ensemble network can provide higher accuracy with a reduced
computational load. For instance, Bussov and Nättilä [33] used computer
vision to predict turbulent fluid flow, integrating an ensemble of models to
extract various shapes in the images and combine them to construct large-
scale structures in the data.

This paper introduces an SPM for CFD simulation in building engineering
applications, which utilizes (i) a two-layered ensemble learning architecture
to improve accuracy and generalizability, (ii) a novel input feature definition
protocol based on a combination of spherical and Cartesian coordinate sys-
tems to improve the model’s scalability, and (iii) an innovative loss-function
to improve the model training efficiency in different regions of the building.
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3. Methodology

3.1. Fluid Dynamics
In fluid dynamics, the behavior of fluid flow can vary widely depending

on factors such as velocity, viscosity, and geometry. Laminar flow is defined
by the smooth, orderly movement of fluid particles along parallel paths, dom-
inated by viscosity, ensuring stability. In contrast, turbulent flow is chaotic
and typically occurs at higher speeds; small localized swirling eddies promote
intense mixing and velocity fluctuations. During the transition from laminar
to turbulent flow, small localized eddies begin to disrupt ordered laminar
flows. Stagnant flow occurs when fluid particles stop at obstacles or due to
the non-slip boundary condition imposed by static surfaces, such as walls.

Different flow regimes are governed by distinct equations and exhibit
unique phenomena. CFD flow solvers, such as ANSYS Fluent used in this
research, often utilize Reynolds Averaged Navier Stokes (RANS) equations
to represent a time-averaged form of the Navier-Stokes equations [34]. In
RANS equations, flow variables are decomposed into mean and fluctuating
components, and typically, the mean flow is further separated into laminar
and turbulent components. Turbulent flow is then handled as a statistical
phenomenon.

The fluid flow regimen can be determined based on the Reynolds number
of fluid flow, calculated using Equation 1. Typically, a Reynolds number of
less than 2,000 will indicate laminar flow, and greater than 4,000 indicates
turbulent flow [35].

Re =
ρuL

µ
(1)

where ρ is the density of the fluid (kg
s
), u is the fluid velocity (m

s
), L is

the characteristic dimension (m), and µ is the kinematic viscosity (Ns
m2 ).

Reynold’s number will be used in this research to segment the entire room
airflow into four distinct flow regimes.

For the design of mechanical ventilation systems, the volumetric flow
rate of air is designed to meet the minimum requirements by the standards.
Given the mass flow rate of air ṁ(kg

s
), its volumetric flow rate (m

3

s
) can be

calculated using Equation 2.

Q̇(L) = 1, 000
ṁ

ρ
(2)
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In this research, a simple HVAC system was created to simulate indoor
air conditioning systems in a typical office building, using 400mm by 400mm
ducts to maintain a comfortable airspeed of 0.2 m/s [36]. Experimentally,
this velocity corresponds to a mass flow rate of 0.015 kg/s using equation
2. With a recommended air mass flow rate of 2.5 l/s per occupant [2], the
system can accommodate four people in a 5m x 5m x 3m room, typical for
office spaces.

The model was created in ANSYS Discovery, and a smooth-transition
boundary layer has been introduced along all four walls to enforce a no-slip
boundary condition, an approximation for the transition from stagnation
flow on the walls to the free-stream flow in the body of the room. The
volume enclosed by the surface was given the thermodynamic properties of
air at 25◦C, and the four walls were given the surface roughness properties of
concrete to replicate a modern office design. A maximum mesh size of 0.025
m was chosen so that the tolerance for velocity variations between trials is
less than 5%.

For this investigation, we utilized the steady-state solution scheme, ideal
for scenarios where HVAC rates remain constant for extended periods, re-
sulting in stable velocity-flow fields within the office. In most commercial
buildings, including office buildings, the mechanical ventilation systems are
controlled by the building automation systems (BAS), which the steady-state
solution scheme can best represent. Initial results confirmed that the lam-
inar, turbulent regions around the inlet and outlet significantly affect fluid
velocity profiles; hence, the k − ω turbulence model is chosen to represent
turbulent flow accurately. Following the simulation completion, data consist-
ing of x, y, z positions and velocities at each node in the mesh were exported
for training, testing, and validating the SPM.

3.2. Coordinate Transformation
In several existing CFD proxy models, the input features are the location

of each grid point on the mesh, represented in the 3-dimensional Cartesian
coordinate system. The outputs of these models —velocity vectors— are also
often represented in a Cartesian system. However, this representation of the
input and output features diminishes the generalisability of the model as it
is dependent on the environmental context [37]. Furthermore, representing
the velocity vectors in the Cartesian system causes further challenges due
to independent variation of velocity components along different axes (e.g.,
moving in the x direction can significantly change velocity in the z direction).
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As a result, the ML models developed with this set of input features require
more hidden layers to extract abstract spatial features of the room, which,
in turn, increases the computational cost of these models.

Through our pilot study, these limitations led to instabilities during the
training process, hindering the SPM’s ability to discern any meaningful pat-
terns in the training data (results are presented in Table 3). To tackle this
challenge, an alternative approach is utilized by representing the model’s in-
put features and the outputs (i.e., velocity vectors) by transforming them
into the spherical coordinate system using equations 3, 4, and 5.

r =
√
(vx)2 + (vy)2 + (vz)2 (3)

θ = arcos
(vz
r

)
(4)

ϕ = atan
(
vy
vx

)
(5)

In this system, the velocity components are combined into a single radial
magnitude, while θ and ϕ represent the inclinations of the vector to the
vertical and horizontal axes, respectively.

Additionally, transforming the coordinate distances to the HVAC inlet
and outlet into spherical vectors offers significant advantages for the learn-
ing process of the model. By consolidating the coordinate distances (∆x,
∆y, ∆z) into a single distance magnitude, denoted as r, the distance be-
comes strictly positive, providing a more intuitive representation for machine
learning. Moreover, incorporating the reciprocal of the distance reflects the
physical phenomenon where velocity increases as the distance to the vent
decreases. However, distances less than 1 mm were standardized to 1mm to
avoid numerical instability, effectively bounding the feature within a range
of 0 to 1,000 and stabilizing the model during training. Fluid velocity near
boundaries tends to be zero. However, the direction of velocity also changes
around walls due to the re-circulation of air being deflected. This relationship
between fluid velocity and wall distance is, therefore, complex, and the inputs
were left as raw distances. Table 1 shows the representation of the models’
input features and output, and Figure 1 shows their graphical representation.

In the context of spherical vectors to the inlet and outlet, the polar an-
gle (θ) denotes the angle between the positive z-axis (vertical), while the
azimuthal angle (ϕ) signifies the angle on the x-y plane. To align with the
natural airflow throughout the room, angles were computed from the inlet to
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Feature Parameters

Walls Ceiling Floor Right Left Front Back

Inlet 1/r θ(0, π/2) ϕ(0, 2π)

Outlet 1/r θ(0, π/2) ϕ(0, 2π)

Output r θ(0, π) ϕ(0, 2π)

Table 1: Table showing the inputs and outputs of the spherical SPM

Figure 1: The input features using Cartesian and Spherical coordinate systems

the reference point and from the reference point to the outlet, as depicted in
Figure 1. These angles were represented in radians, as degree variations have
a much larger magnitude, and the ANN would assign greater significance to
the angular input than the velocity magnitude input.

3.3. Loss Function
A key element in supervised learning algorithms is calculating an error

measure —often called loss function— through the training process. The
error is propagated backward through the network via a process known as
backpropagation, in order to adjust the weights and reduce the error over
time, iteratively. A common loss function used in ML applications is the
Mean Absolute Error (MAE), which quantifies the average magnitude of
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errors between predicted values (ŷi) and actual values (yi) [38], as shown in
Equation 6.

MAE =
1

n

n∑
i=1

|yi − ŷi| (6)

Despite the wide application of MAE, it is not suitable for ML applica-
tions, in which the output space involves features at different scales. In such
conditions, the Mean Absolute Percentage Error (MAPE) is used, as shown
in Equation 7, which assesses the average absolute percentage difference be-
tween predicted and actual values [39].

MAPE =
100

n

n∑
i=1

|yi − ŷi
yi

| (7)

Being a relative error metric, it treats all scales equally. However, it yields
disproportionately large errors when dealing with very small actual values
(yi << 1). This means that small outputs will dominate the training process
in physical systems with noise. For example, in the case of CFD simulation,
using MAPE for training the SPM is inappropriate since it emphasizes points
close to the boundary conditions (e.g., walls) where the airflow velocity is
nearly zero. To remedy this limitation, the Mean Absolute Arctangent Error
(MAAE) is introduced —shown in Equation 8— as an effective loss function
for ML applications by evaluating the arc-tangent of the MAPE [40]. As a
result, MAAE is confined in the range of [0, π

2
].

MAAE =
1

n

n∑
i=1

arctan(|yi − ŷi
yi + ϵ

|) (8)

The addition of ϵ on the denominator also serves to prevent computational
errors when using this loss function. Although less intuitive than MAPE
percentages, MAAE is advantageous because it is less sensitive to nearly zero
outputs. In this research, MAAE is used as the loss function for training the
SPM for CFD simulation due to its advantages over other more commonly
used error measures.
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4. Model Development Iterations

4.1. Initial Development
In an unoccupied room with no natural or mechanical ventilation, airflow

tends to be uniform and stagnant, with zero velocity throughout the space.
However, the introduction of ventilation disrupts this uniformity, leading to
airflow patterns that eventually settle into a steady-state equilibrium. As
a result, the velocity at any point within the room becomes a function of
its position relative to the key features within the space (e.g., walls, HVAC
inlets, and outlets).

Our initial results confirm that representing the spatial features of the
space in the Cartesian coordinate system, as suggested in some earlier studies
[41], cannot provide a generalizable SPM. Table 2 presents the input features
utilized for developing the initial model.

Walls Ceiling Floor Right Left Front Back

Inlet ∆x ∆y ∆z r =
√

∆x2 +∆y2 +∆z2

Outlet ∆x ∆y ∆z r =
√

∆x2 +∆y2 +∆z2

Output vx vy vz

Table 2: Input and output features of the SPM defined in the Cartesian system

The positions relative to HVAC inlets and outlets were represented us-
ing both coordinate differentials (∆x, ∆y, ∆z) and absolute distances (r).
This dual representation is necessary because HVAC air jets typically exhibit
relatively consistent velocities directly beneath them, which then diminish
rapidly as one moves away from the source across the room. The SPM out-
puts comprise the separated x, y, and z components of velocity (vx, vy, vz)
as they fully describe the velocity flow field within the room.

Initially, the Mean Absolute Error (MAE), as a common loss function
in several ML applications (see Equation6), served as the loss function for
training the SPM. However, due to the significantly larger scale of the ve-
locity direction angles as compared to its magnitude, the model tended to
prioritize minimizing angle errors. Consequently, this led to velocity mag-
nitude predictions becoming random and inaccurate. To address this issue,
the Mean Absolute Percentage Error (MAPE), illustrated by equation 7,
was introduced. However, when predicting velocities as low as 1× 10−7, the
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practically negligible velocity errors may result in percentage errors of sev-
eral thousand percent and dominate the learning process. As a solution, the
Mean Absolute Arctangent Error (MAAE), represented by equation 8, was
adopted.

Through the initial model development stage, several architectures of
ANN were tested to develop a general SPM for the entire room, and the
performance of each model was investigated by developing error heat maps
throughout the room. The analysis of error heat maps revealed that velocity
vector orientations (θ and ϕ) and magnitudes were highly sensitive to changes
in position, which was almost impossible for a singular ANN to predict veloc-
ities in the entire room and hence resulted in large errors. To prevent large
errors, the entire room space was segmented into four flow regimes, which
led to a significant decrease in the average error for all segments. Different
physical properties govern different flow regimes; hence an ANN specialized
in predicting each regime will yield the best results. Flow regime change can
be caused by many factors including Reynolds number, surface roughness of
each wall, and geometry changes. However, for simplicity, classification will
be based on the Reynolds number using Equation 1. Table 3 summarizes
the initial model development results, and the highlights specify the chosen
settings for the final SPM.

Number of
Hidden Layers

Coordinate
system

Learning
Rate

Number
of ANNs

Loss
Function

MAPE
(%)

3 Cartesian 0.001 1 MAPE 5489
3 Cartesian 0.001 1 MAAE 187
3 Spherical 0.001 1 MAAE 72
3 Spherical 0.001 4 MAAE 21
7 Spherical 0.001 4 MAAE 12
7 Spherical 0.0017 4 MAAE 1.75

Table 3: Summary of the SPM performance metrics through successful initial iterations

Changing the loss function from MAPE (Mean Absolute Percentage Er-
ror) to MAAE (Mean Arctanget Absolute Error) had the largest proportional
decrease in percentage error, reducing it from 5486% to 187%. Switching the
coordinate system in the data from Cartesian to spherical further reduced
the MAPE from 187% to 72%.
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4.2. Final Model Architecture
Based on the findings of initial model development efforts, the final archi-

tecture of the SPM is developed by integrating coordinate transformation,
two-layered ensemble learning (i.e., flow segmentation and multiple velocity
predictor DNNs), and the MAAE loss function as presented in Figure 2.

Figure 2: Final SPM Architecture for Predicting CFD Simulation Results

The airflow classifier, which is a simple multi-layer perception ANN, seg-
ments the space into four flow regimes; then, the input features for each
segment are fed into a deep neural network (DNN) that predicts the air flow
velocity.

The architecture of the flow segmentation ANN was optimized using grid-
search, resulting in a model with four hidden layers, each with 64, 128, 256,
and 512 nodes, respectively, and with a softmax activation function at the
output layer. The performance of the flow segmentation ANN is presented
in Table 4.

Turbulent Transition Laminar Stagnant

Percentage of cells (%) 2.53 7.23 88.21 2.03

Min-Velocity (m/s) 0.021 0.01 0.0002 0

Min Reynolds Number 4000 2000 100 0

Prediction Accuracy (%) 99.13 96.41 98.65 86.24

Table 4: Performance metrics of the flow segmentation ANN
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The flow segmentation ANN was able to assign flow regimes to each point
in the room with a weighted average accuracy of 98.2%.

The velocity predictor DNNs are designed with seven hidden layers with
node counts increasing in a pyramidal arrangement: 32, 64, 128, 256, 128,
64, and 32 nodes in each respective layer. This pyramidal architecture en-
ables the extraction of increasingly abstract features at intermediate layers,
which are then distilled down to the three output nodes, proving effective for
regression tasks [42].

Both models, the flow segmentation ANN and the velocity predictor
DNNs, are trained using Adam Optimizer [43]. The optimal training pa-
rameters (i.e., learning rate) were acquired by hyperparameter optimization,
where adjusting the learning rate from 0.001 to 0.0017 could significantly
improve the accuracy of the SPM.

4.3. Model Training and Testing
The training data was generated from two rooms on ANSYS Fluent, and

a training, validation, and testing split of the data was created at 70%, 15%,
and 15%. The model was trained and then tested on the unseen test set to
validate its ability to predict unseen data. The MAAE for each split was
recorded and converted into MAPE, which allows a more intuitive analysis
of results, as presented in Table 5.

Performance/Flow Segment Turbulent Transition Laminar Stagnant
Training MAAE 0.0250 0.0218 0.0551 0.5881
Training MAPE (%) 2.50 2.18 5.52 66.30
Test MAAE 0.0190 0.0184 0.0458 0.5820
Test MAPE (%) 1.90 1.84 4.58 65.80
Inference Time per room(s) 0.0352 0.0496 0.6414 0.0193

Table 5: The evaluation metrics for Smart Proxy Model

The weighted average MAPE of the SPM on the test data is 5.56 ≈
5%, which encompasses both the inaccuracies associated with the airflow
segmentation ANN and the velocity predictor DNNs.

5. Results

The flow segmentation ANN classifies the entire room space into four
flow regimes. Figure 3(a) shows a cut-plot of the room at the location of
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the air-mass flow inlet. This diagram shows the physical location from which
each airflow segment is extracted. The turbulent segment is mainly com-
posed of flow below the mass-flow inlet and outlet vents, and the transition
region typically outlines any turbulent regions or sharp changes in geometry.
Stagnant flow predominantly occurs due to the boundary layer of each wall.
Next, the velocity predictor DNNs predict the magnitude and direction of
airflow velocity at every given location in the room, as shown in Figure 3(b).

Figure 3: Graphic showing (a) the fluid flow regimes in a cut section of a room with an
HVAC system, and (b) airflow velocity predictions by DNNs

The testing results presented in Table 5 illustrate that the SPM predicts
turbulent and transitional flow to a test MAPE of less than 2%. The accuracy
was very high as turbulent flow is generally clustered in very close proximity
to the HVAC inlets and outlets and thus is highly influenced by the input
features. These results are very promising as flow from these regimes can
have a velocity magnitude of up to 1000 times the magnitude of a velocity
in laminar flow and thus will affect the entire velocity flow field much more.
On the other hand, the laminar flow model has a relatively higher test error
of 6.8%; this discrepancy could be attributed to the dispersed nature of
laminar flow throughout the room, leading to more complex flow patterns
that are inherently harder to predict accurately. The stagnant flow model
performs very poorly, with a MAPE of 68%. At very low airflow velocity,
even random variations in conditions can lead to large relative changes in
angle and velocity, which are impossible to account for in an SPM. On a
positive point, the test MAPE for the stagnant flow model is consistent with
the training MAPE, demonstrating that the model performs well with unseen
data. Furthermore, since stagnant flow is only 2.03% of the entire room space
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and represents nearly zero airflow velocity, it is not a significant output of the
SPM expected. Figure 4 presents the heatmap of the error in the results in a
combination of standing and bird-eye view angles (a horizontal cross-section
of the room).

Figure 4: Heath of the SPM results in (a) standing view for the airflow velocity magnitude;
(b) bird-eye view for the azimuthal angle; and (c) bird-eye view for the polar angle

The error heatmaps shown in Figure 4 indicate that the stagnant flow
regime dominates the errors of the SPM. As Figure 4(a) illustrates in fur-
ther detail, these errors are predominantly occurring in the proximity of the
boundary conditions (i.e., walls and the ceiling), indicating the lower signifi-
cance in real-world applications of the SPM. Furthermore, Figure 4(b) shows
more significant errors in the azimuthal velocity angle around the HVAC out-
let, indicating poor model performance when the airflow switches direction
sharply.

5.1. Discussion
During the optimization stage of the SPM, the SPM was tested with the

same inputs but only tasked with predicting the velocity magnitude, which
led to very poor results. This indicates that the neural network weights
necessary for forecasting azimuthal and polar angles are crucial in accurately
predicting velocity magnitude; this highlights the importance of a complete
output basis within SPM models. Indoor airflow is heavily governed by
eddies and swirls generated by the deflection of air from walls and edges,
and as such, the velocity orientation tells the SPM whether the airflow will
be stopped by an obstacle or accelerated. The model was initially trained
and tested on one simulation, and then the training set was expanded to
include two simulations. As the dataset was expanded, the model training
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and testing accuracy increased significantly, suggesting that it scaled well to
a more expansive dataset.

A major challenge that the SPM faces is predicting the azimuthal and
polar angles in the stagnant flow regime. One potential solution to address
this issue is to refine the training data for the stagnant regime within the
SPM. By smoothing out the angle changes within the stagnation regime train-
ing data, only the predominant flow directions would prevail, which would
reduce anomalous errors and stabilize training. Moreover, further discrep-
ancy appears evident between the free stream jet at the HVAC inlet and
the surrounding flow, indicating a discontinuity between predictions made
by turbulent and transition models. Given that the turbulent model yields
the most accurate predictions, the SPM could gradually integrate its predic-
tions from one model to influence the predictions at the boundary of the next
model, allowing the SPM to build the flow field iteratively. Such a strategy
can potentially mitigate errors across the transition, laminar, and stagnant
flow regimes.

A key performance indicator of the SPM, besides the prediction accuracy,
is the computational cost of the SPM. The computational cost of the two
models is compared based on their simulation run-time. The SPM inference
ran on a laptop with 9th gen Intel Core i7 processor and 16GB of RAM, and
the CFD simulation ran on Durham Universities Hamilton 8 Supercomputer
with 384 CPU cores (2x AMD EPYC 7702) and 256GB RAM [44]. Although
the computational power of the two systems is incomparable, we will compare
the two models based on the simulation time rather than pure computational
cost. The Inference time of the SPM for each flow segment is presented in
Table 5. The total inference time for the entire room is ≈ 0.8s (including
regime classification). In contrast, running equivalent CFD simulation on
Hamilton8 Supercomputer [44] takes ≈ 5 hrs to complete, which indicates
that the SPM could save 99.996% of the computation time. Such a significant
reduction in simulation time can realize new applications of CFD in the
building engineering, including real-time control of HVAC systems based on
CFD data or the application of heuristic optimization techniques for finding
optimal building layouts.

6. Conclusions and Future Developments

This research highlights the effectiveness of a deep learning-based smart
proxy model (SPM) in predicting indoor velocity flow fields, replacing CFD
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simulation in those problems in which accelerated simulation is needed for
engineering applications. A novel SPM with a two-layered, ensemble learn-
ing architecture is proposed in this research, which has proven effective in
extracting information from the building and replicating the results of CFD
simulation at a fraction of the computational cost. The proposed architec-
ture consists of a simple ANN used to segment the airflow field into four
flow regimes: turbulent, transition, laminar, and stagnant, which were ini-
tially distinguished based on Reynold’s number. Four DNNs are placed at
the second layer to predict the airflow velocity in every airflow segment. The
performance of the proposed SPM, measured by the mean absolute percent-
age error (MAPE), on the testing (unseen) data 1.9% for turbulent, 1.84%
for transitional, 4.58% for laminar, and 65.80% for stagnant. The weighted
average MAPE for the entire room is ≈ 5% for the entire room. Crucially,
the SPM completes simulations for a typical medium-sized office within less
than 0.8 seconds on a laptop PC, contrasting the CFD simulation run for the
same office that takes ≈ 5 hours on a supercomputer with 384 CPU cores
and 256GB of RAM. As a result, the proposed SPM could determine the
airflow velocity in the case study with 95% accuracy at only 0.004% of the
time required for numerical simulation. Accelerated yet accurate CFD sim-
ulation results can introduce new use cases for CFD in building engineering
applications.

Our proposed SPM is still based on a context-dependent modeling archi-
tecture, meaning it best performs on the same or similar spaces for which it
is trained. For more generalizable SPMs, a diverse range of CFD data must
be generated and potentially released as standard CFD training datasets,
such as the ones available for computer vision models. This can be achieved
in the future using scheme files that can automate the CFD simulation pro-
cess and repeatedly generate new simulations for different boundary condi-
tions. Furthermore, the generalizability of the SPM could be improved by
using physics-informed neural networks, which constrain the predictions of
the SPM to those that align with physical principles. These additions may
make the SPM slightly more computationally expensive but could also offer
substantial increases in their generalizability and accuracy.
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